Reflection and Transmission at a Potential Step

Outline

- Review: Particle in a 1-D Box
- Reflection and Transmission - Potential Step
- Reflection from a Potential Barrier
- Introduction to Barrier Penetration (Tunneling)

Reading and Applets:
.Text on Quantum Mechanics by French and Taylor
.Tutorial 10 - Quantum Mechanics in 1-D Potentials
. applets at http:// phet. colorado. edu/en/ get-phet/ one-at-a-time

A Simple Potential Step

CASE I: $\mathrm{E}_{\mathrm{o}}>\mathbf{V}$

In Region 1:

$$
E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

$$
\Longrightarrow k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}
$$

In Region 2:

$$
\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longrightarrow k_{2}^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}
$$

A Simple Potential Step

CASE I : $\mathrm{E}_{0}>\mathrm{V}$

$$
\psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} \quad \psi_{2}=C e^{-j k_{2} x}
$$

ψ is continuous:

$$
\psi_{1}(0)=\psi_{2}(0)
$$

\Rightarrow
$A+B=C$
$\frac{\partial \psi}{\partial x}$ is continuous: $\quad \frac{\partial}{\partial x} \psi(0)=\frac{\partial}{\partial x} \psi_{2}(0) \quad \Longrightarrow \quad A-B=\frac{k_{2}}{k_{1}} C$

A Simple Potential Step

CASE I: $\mathrm{E}_{\mathrm{o}}>\mathrm{V}$

$$
\xrightarrow{\psi_{A}=A e^{-j k_{1} x}} \quad \xrightarrow{\psi_{C}=C e^{-j k_{1} x}}
$$

$$
\begin{array}{rlrl}
\frac{B}{A} & =\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}} \\
& =\frac{k_{1}-k_{2}}{k_{1}+k_{2}} & \frac{C}{A} & =\frac{2}{1+k_{2} / k_{1}} \\
& =\frac{2 k_{1}}{k_{1}+k_{2}}
\end{array} \quad \Longleftrightarrow\left\{\begin{array}{l}
A+B=C \\
A-B=\frac{k_{2}}{k_{1}} C
\end{array}\right.
$$

Example from: http:// phet.colorado. edu/ en/ get-phet/ one-at-a-time

Quantum Electron Currents

Given an electron of mass m
that is located in space with charge density $\rho=q|\psi(x)|^{2}$
and moving with momentum $<p>$ corresponding to $<v>=\hbar k / m$
...then the current density for a single electron is given by

$$
J=\rho v=q|\psi|^{2}(\hbar k / m)
$$

A Simple Potential Step

CASE I: $\mathrm{E}_{\mathrm{o}}>\mathbf{V}$

$$
\begin{gathered}
\text { Reflection }=R=\frac{J_{\text {reflected }}}{J_{\text {incident }}}=\frac{J_{B}}{J_{A}}=\frac{\left|\psi_{B}\right|^{2}\left(\hbar k_{1} / m\right)}{\left|\psi_{A}\right|^{2}\left(\hbar k_{1} / m\right)}=\left|\frac{B}{A}\right|^{2} \\
\text { Transmission }=T=\frac{J_{\text {transmitted }}}{J_{\text {incident }}}=\frac{J_{C}}{J_{A}}=\frac{\left|\psi_{C}\right|^{2}\left(\hbar k_{2} / m\right)}{\left|\psi_{A}\right|^{2}\left(\hbar k_{1} / m\right)}=\left|\frac{C}{A}\right|^{2} \frac{k_{2}}{k_{1}} \\
\frac{B}{A}=\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}} \quad \frac{C}{A}=\frac{2}{1+k_{2} / k_{1}}
\end{gathered}
$$

A Simple Potential Step

CASE I: $\mathrm{E}_{\mathrm{o}}>\mathrm{V}$

$$
\xrightarrow{\psi_{A}=A e^{-j k_{1} x}} \quad \underline{\psi_{C}=C e^{-j k_{1} x}}
$$

© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Image originally created by the IBM Corporation.

A Simple Potential Step

In Region 1: $\quad E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Rightarrow k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}$

In Region 2:

$$
\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longrightarrow \kappa^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}
$$

A Simple Potential Step

$$
\psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} \quad \psi_{2}=C e^{-\kappa x}
$$

ψ is continuous:

$$
\psi_{1}(0)=\psi_{2}(0)
$$

$$
A+B=C
$$

$\frac{\partial \psi}{\partial x}$ is continuous: $\quad \frac{\partial}{\partial x} \psi(0)=\frac{\partial}{\partial x} \psi_{2}(0) \quad \Longrightarrow \quad A-B=-j \frac{\kappa}{k_{1}} C$

A Simple Potential Step

CASE II: $E_{0}<V$

$$
\begin{gathered}
\frac{B}{A}=\frac{1+j \kappa / k_{1}}{1-j \kappa / k_{1}} \quad \frac{C}{A}=\frac{2}{1-j \kappa / k_{1}} \\
R=\left|\frac{B}{A}\right|^{2}=1
\end{gathered}
$$

Total reflection \rightarrow Transmission must be zero

Quantum Tunneling Through a Thin Potential Barrier

Total Reflection at Boundary

Frustrated Total Reflection (Tunneling)

KEY TAKEANAYS

CASE I : $E_{0}>V$
A Simple Potential Step

$$
\text { Reflection }=R=\left|\frac{B}{A}\right|^{2}=\left|\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right|^{2}
$$

Transmission $=T=1-R=\frac{4 k_{1} k_{2}}{\left|k_{1}+k_{2}\right|^{2}}$
PARTIAL REFLECTION
$\psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x}$

$$
k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}
$$

$$
k_{2}^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}
$$

$$
\begin{aligned}
R & =\left|\frac{B}{A}\right|^{2}=1 \\
T & =0
\end{aligned}
$$

TOTAL REFLECTION

	$\xrightarrow{\psi_{C}=C e^{-\kappa x}}$ $\begin{aligned} & \psi_{2}=C e^{-\kappa x} \\ & \kappa^{2}=\frac{2 m\left(V-E_{o}\right)}{\hbar^{2}} \end{aligned}$

A Rectangular

In Regions 1 and 3: $\quad E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longleftrightarrow k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}$

In Region 2: $\quad\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longleftrightarrow \quad \kappa^{2}=\frac{2 m\left(V-E_{o}\right)}{\hbar^{2}}$

$$
\text { for } \mathrm{E}_{\mathrm{o}}<\mathrm{V}: \quad\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)} \sinh ^{2}(2 \kappa a)}
$$

A Rectangular Potential Step

for $E_{0}<V$:

$$
T=\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)} \sinh ^{2}(2 \kappa a)}
$$

$\sinh ^{2}(2 \kappa a)=\left[e^{2 \kappa a}-e^{-2 \kappa a}\right]^{2} \approx e^{-4 \kappa a}$

$$
T=\left|\frac{F}{A}\right|^{2} \approx \frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)}} e^{-4 \kappa a}
$$

